237 research outputs found

    Identity-Based Key Agreement for Blockchain-Powered Intelligent Edge

    Get PDF

    Secure Certificateless Public Key Encryption without Redundancy

    Get PDF
    Certificateless public key cryptography was introduced to solve the key escrow problem in identity based cryptography while enjoying the most attractive {\em certificateless} property. In this paper, we present the first {\em secure} certificateless public key encryption (CLPKE) scheme {\em without redundancy}. Our construction provides optimal bandwidth and a quite efficient decryption process among all the existing CLPKE schemes. It is provably secure against adaptive chosen ciphertext attacks in the random oracle model under a slightly stronger assumption

    Leakage-Resilient Authenticated Key Exchange for Edge Artificial Intelligence

    Get PDF

    A revocable certificateless signature scheme

    Get PDF
    Certificateless public key cryptography (CLPKC), with properties of no key escrow and no certificate, has received a lot of attention since its invention. However, membership revocation in certificateless cryptosystem still remains a non-trivial problem: the existing solutions are not practical for use due to either a costly mediator or enormous computation (secret channel). In this paper, we present a new approach to revocation in CLPKC with a concrete construction of a revocable certificateless signature (RCLS) scheme. In our scheme, a user\u27s private key is composed of three parts: an initial partial private key, a time key and a secret value. The transmission of updated-key requires only a public channel, which makes our RCLS scheme more efficient than other methods. We first provide formal definition and security model for a RCLS scheme. The new scheme is proved secure in the random oracle model, based on the Computational Diffie-Hellman problem
    • …
    corecore